skip to main content


Search for: All records

Creators/Authors contains: "Reynolds, Mark"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The proximity and duration of the tidal disruption event ASASSN-14li led to the discovery of narrow, blueshifted absorption lines in X-rays and UV. The gas seen in X-ray absorption is consistent with bound material close to the apocenter of elliptical orbital paths, or with a disk wind similar to those seen in Seyfert-1 active galactic nuclei. We present a new analysis of the deepest high-resolution XMM-Newton and Chandra spectra of ASASSN-14li. Driven by the relative strengths of He-like and H-like charge states, the data require [N/C] ≥ 2.4, in qualitative agreement with UV spectral results. Flows of the kind seen in the X-ray spectrum of ASASSN-14li were not clearly predicted in simulations of TDEs; this left open the possibility that the observed absorption might be tied to gas released in prior active galactic nucleus (AGN) activity. However, the abundance pattern revealed in this analysis points to a single star rather than a standard AGN accretion flow comprised of myriad gas contributions. The simplest explanation of the data is likely that a moderately massive star (M≳ 3M) with significant CNO processing was disrupted. An alternative explanation is that a lower mass star was disrupted that had previously been stripped of its envelope. We discuss the strengths and limitations of our analysis and these interpretations.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  2. Abstract We present Event Horizon Telescope (EHT) 1.3 mm measurements of the radio source located at the position of the supermassive black hole Sagittarius A* (Sgr A*), collected during the 2017 April 5–11 campaign. The observations were carried out with eight facilities at six locations across the globe. Novel calibration methods are employed to account for Sgr A*'s flux variability. The majority of the 1.3 mm emission arises from horizon scales, where intrinsic structural source variability is detected on timescales of minutes to hours. The effects of interstellar scattering on the image and its variability are found to be subdominant to intrinsic source structure. The calibrated visibility amplitudes, particularly the locations of the visibility minima, are broadly consistent with a blurred ring with a diameter of ∼50 μ as, as determined in later works in this series. Contemporaneous multiwavelength monitoring of Sgr A* was performed at 22, 43, and 86 GHz and at near-infrared and X-ray wavelengths. Several X-ray flares from Sgr A* are detected by Chandra, one at low significance jointly with Swift on 2017 April 7 and the other at higher significance jointly with NuSTAR on 2017 April 11. The brighter April 11 flare is not observed simultaneously by the EHT but is followed by a significant increase in millimeter flux variability immediately after the X-ray outburst, indicating a likely connection in the emission physics near the event horizon. We compare Sgr A*’s broadband flux during the EHT campaign to its historical spectral energy distribution and find that both the quiescent emission and flare emission are consistent with its long-term behavior. 
    more » « less
  3. Abstract We present the first Event Horizon Telescope (EHT) observations of Sagittarius A* (Sgr A*), the Galactic center source associated with a supermassive black hole. These observations were conducted in 2017 using a global interferometric array of eight telescopes operating at a wavelength of λ = 1.3 mm. The EHT data resolve a compact emission region with intrahour variability. A variety of imaging and modeling analyses all support an image that is dominated by a bright, thick ring with a diameter of 51.8 ± 2.3 μ as (68% credible interval). The ring has modest azimuthal brightness asymmetry and a comparatively dim interior. Using a large suite of numerical simulations, we demonstrate that the EHT images of Sgr A* are consistent with the expected appearance of a Kerr black hole with mass ∼4 × 10 6 M ⊙ , which is inferred to exist at this location based on previous infrared observations of individual stellar orbits, as well as maser proper-motion studies. Our model comparisons disfavor scenarios where the black hole is viewed at high inclination ( i > 50°), as well as nonspinning black holes and those with retrograde accretion disks. Our results provide direct evidence for the presence of a supermassive black hole at the center of the Milky Way, and for the first time we connect the predictions from dynamical measurements of stellar orbits on scales of 10 3 –10 5 gravitational radii to event-horizon-scale images and variability. Furthermore, a comparison with the EHT results for the supermassive black hole M87* shows consistency with the predictions of general relativity spanning over three orders of magnitude in central mass. 
    more » « less